590 research outputs found

    Efficient table-top dual-wavelength beamline for ultrafast transient absorption spectroscopy in the soft X-ray region.

    Get PDF
    We present a table-top beamline providing a soft X-ray supercontinuum extending up to 370 eV from high-order harmonic generation with sub-13 fs 1300 nm driving pulses and simultaneous production of sub-5 fs pulses centered at 800 nm. Optimization of high harmonic generation in a long and dense gas medium yields a photon flux of  ~ 1.4 × 106 photons/s/1% bandwidth at 300 eV. The temporal resolution of X-ray transient absorption experiments with this beamline is measured to be 11 fs for 800 nm excitation. This dual-wavelength approach, combined with high flux and high spectral and temporal resolution soft X-ray absorption spectroscopy, is a new route to the study of ultrafast electronic dynamics in carbon-containing molecules and materials at the carbon K-edge

    Evaluating the predicted reliability of mechatronic systems: state of the art

    Get PDF
    Reliability analysis of mechatronic systems is a recent field and a dynamic branch of research. It is addressed whenever there is a need for reliable, available, and safe systems. The studies of reliability must be conducted earlier during the design phase, in order to reduce costs and the number of prototypes required in the validation of the system. The process of reliability is then deployed throughout the full cycle of development. This process is broken down into three major phases: the predictive reliability, the experimental reliability and operational reliability. The main objective of this article is a kind of portrayal of the various studies enabling a noteworthy mastery of the predictive reliability. The weak points are highlighted. Presenting an overview of all the quantitative and qualitative approaches concerned with modelling and evaluating the prediction of reliability is so important for future reliability studies and for academic research to come up with new methods and tools. The mechatronic system is a hybrid system, it is dynamic, reconfigurable, and interactive. The modeling carried out of reliability prediction must take into account these criteria. Several methodologies have been developed in this track of research. In this regard, the aforementioned methodologies will be analytically sketched in this paper.Comment: 13 page, Mechanical Engineering: An International Journal (MEIJ), Vol. 3, No. 2, May 201

    Prise en compte des interactions multi-domaines lors de l’évaluation de la fiabilité prévisionnelle des systèmes mécatroniques

    Get PDF
    The mechatronic systems are hybrid, dynamic, interactive and reconfigurable. Therefore their dysfunctional modeling is very difficult. Multi-physical interactions between components have impacts on the degradation or on system failures, leading thus to more uncertainty in reliability evaluation. The work presented in this paper aims to improve the integration of multi-domain interactions in the reliability assessment of mechatronic systems. After a presentation of the state of the art of mechatronic systems reliability estimation methods, we propose to represent multi domain interactions by influential factors in the dysfunctional model. We generally use proportional hazard models; in the case of an interaction represented by a temperature stress, Arrhenius model is used

    Evidential Networks for Evaluating Predictive Reliability of Mechatronics Systems under Epistemic Uncertainties

    Get PDF
    In reliability predicting field, the probabilistic approaches are based on data relating to the components which can be precisely known and validated by the return of experience REX, but in the case of complex systems with high-reliability precision such as mechatronic systems, uncertainties are inevitable and must be considered in order to predict with a degree of confidence the evaluated reliability. In this paper, firstly we present a brief review of the non-probabilistic approaches. Thereafter we present our methodology for assessing the reliability of the mechatronic system by taking into account the epistemic uncertainties (uncertainties in the reliability model and uncertainties in the reliability parameters) considered as a dynamic hybrid system and characterized by the existence of multi-domain interaction between its failed components. The key point in this study is to use an Evidential Network “EN” based on belief functions and the dynamic Bayesian network. Finally, an application is developed to illustrate the interest of the proposed methodology

    Composition-Dependent Passivation Efficiency at the CdS/CuIn1-xGaxSe2 Interface

    No full text
    International audienc

    Dynamic Bayesian Network for Reliability of Mechatronic System with Taking Account the Multi-Domain Interaction

    Get PDF
    This article presents a methodology for reliability prediction during the design phase of mechatronic system considered as an interactive dynamic system. The difficulty in modeling reliability of a mechatronic system is mainly due to failures related to the interaction between the different domains called Multi-domain interaction. Therefore in this paper, after a presentation of the state of the art of mechatronic systems reliability estimation methods, we propose a original approach by representing multi domain interactions by influential factors in the dysfunctional modeled by Dynamic Bayesian Networks. A case study demonstrates the interest of the proposed approach

    Evaluation of the mechatronic systems reliability under parametric uncertainties

    Get PDF
    The main research intent of this paper is to evaluate the predicted reliability of mechatronic system, with take into account the epistemic uncertainties, The work reported here presents a new methodology based on integrating the petri network with the belief functions, in order to create a belief network, and to show how to propagate the parametric uncertainties in reliability models, Some notions of uncertainty related to the reliability systems are presented, subsequently a brief definition of the belief function and its application in reliability studies are detailed and how we integrate it in petri network. To take into account the interactive aspect of mechatronic systems, we introduce the uncertainties associated to this interaction, by implementing the new method proposed by using belief network. Secondly, we study the propagation of these interaction uncertainties in system reliability. Finally, in regard to applicate the methodology, an industrial example "intelligent actuator" is developed

    Inelastic nucleon contributions in (e,e)(e,e^\prime) nuclear response functions

    Full text link
    We estimate the contribution of inelastic nucleon excitations to the (e,e)(e,e^\prime) inclusive cross section in the CEBAF kinematic range. Calculations are based upon parameterizations of the nucleon structure functions measured at SLAC. Nuclear binding effects are included in a vector-scalar field theory, and are assumed have a minimal effect on the nucleon excitation spectrum. We find that for q\lsim 1 GeV the elastic and inelastic nucleon contributions to the nuclear response functions are comparable, and can be separated, but with roughly a factor of two uncertainty in the latter from the extrapolation from data. In contrast, for q\rsim 2 GeV this uncertainty is greatly reduced but the elastic nucleon contribution is heavily dominated by the inelastic nucleon background.Comment: 20 pages, 7 figures available from the authors at Department of Physics and Astronomy, University of Rochester, Rochester NY 1462

    Superscaling in inclusive electron-nucleus scattering

    Get PDF
    We investigate the degree to which the scaling functions F(ψ)F(\psi') derived from cross sections for inclusive electron-nucleus quasi-elastic scattering define the same function for different nuclei. In the region where the scaling variable ψ<0\psi'< 0, we find that this superscaling is experimentally realized to a high degree.Comment: Corrected previously mislabeled figures and cross references; 9 pages, 4 color figures, using BoxedEPS and REVTeX; email correspondence to [email protected]
    corecore